
Malaysian Journal of Mathematical Sciences 11 (3): 317–330 (2017)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

The Effects of Hyperbolic Eigenparameter on
Spectral Analysis of a Quantum Difference

Equations

Aygar, Y.

Department of Mathematics, Faculty of Science, University of
Ankara, Turkey

E-mail: yaygar@ankara.edu.tr

Received: 26 December 2016
Accepted: 20 September 2017

ABSTRACT

In this study, second-order nonselfadjoint expression and its associated
boundary condition depending on an hyperbolic eigenparameter are dis-
cussed. We introduce the sets of eigenvalues and spectral singularities of
a boundary value problem (BVP) which is defined with same quantum
difference expression and boundary condition. Next, some spectral prop-
erties of eigenvalues and spectral singularities are investigated using the
Jost solution, green function and resolvent operator of this BVP.

Keywords: Eigenvalue, spectral singularity, q-difference equation, green
function, Jost solution, resolvent.



Aygar, Y.

1. Introduction

Time scale theory was first presented by Hilger (1988) in his doctoral dis-
sertation. Dynamic equations on time scales have been introduced by Hilger
(1990) to extend the theory of ordinary differential, difference and quantum
equations which are based on the q-calculus and the h-calculus (Kac and Che-
ung (2002)), defined over non-empty closed subsets of the real line. Several
important problems concerning higher-order dynamic equations on arbitrary
time scales which are general cases of q-difference equations in Bohner et al.
(2003) and Bohner and Peterson (2001). In Gulsen and Yilmaz (2016), authors
investigate the spectral theory of Dirac system on time scales. Quantum dif-
ference equations have huge applications in several disciplines such as physics,
mathematics, biology, engineering and economics.

In this way, mathematicians begin to deal with the topic of the spectral
analysis of q-difference equations and operators. In the work done by Adivar
and Bohner (2006), the spectral analysis of nonselfadjoint q-difference equa-
tions have been investigated Adivar and Bohner (2006). In last two years, the
spectral analysis of q-difference equations and operators both including a poly-
nomial type Jost solution and exponential type Jost solution in ordinary and
matrix cases have been studied in Aygar (2016a), Aygar and Bohner (2015) and
Aygar and Bohner (2016b). Also, BVPs related with q -difference equations
have been considered in Aygar (2015), Aygar (2016c) and Aygar and Bohner
(2016a).

This study is different from the studies which are mentioned above, in this
work, we use hyperbolic eigenparameter to get the spectral analysis of a q-
difference equation. We extend the results given in Aygar (2016b) by getting
important properties of eigenvalues and spectral singularities of this q-difference
equation.

To obtain our main results about eigenvalues and spectral singularities, we
use properties of Jost solution, green function and resolvent given in Aygar
(2016b). At the end, it can be seen that the differences and similarities of
using trigonometric eigenparameter (Adivar and Bohner (2006), Aygar (2015),
Aygar (2016a), Aygar and Bohner (2016a), Bohner and Koyunbakan (2016))
and using hyperbolic eigenparameter on the spectral analysis of these difference
equations.

As a result of using hyperbolic eigenparameter, analytical region of Jost
solution and the region of eigenvalues and spectral singularities has changed.
In present paper, we use the notation qN0 := {qn : n ∈ N0} for q > 1, where
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N0 denotes the set of nonnegative integers. We use a Hilbert space `2(qN) of
complex-valued functions defining with the inner product

〈f, g〉q :=
∑
t∈qN0

µ(t)f(t)g(t), f, g : qN0 → C

and the norm

‖f‖q :=

∑
t∈qN0

µ(t)|f(t)|2
 1

2

, f : qN0 → C

where µ(t) = (q − 1)t for all t ∈ qN0 .

Let us consider the nonselfadjoint BVP

qa(t)y(qt) + b(t)y(t) + a

(
t

q

)
y

(
t

q

)
= λy(t), t ∈ qN (1)

and the boundary condition

(γ0 + γ1λ)y(q) + (β0 + β1λ)y(1) = 0,

γ0β1 − γ1β0 6= 0, γ1 6= β0

a(1) ,
(2)

where {a(t)}t∈qN0 and {b(t)}t∈qN are complex sequences, λ is an eigenparame-
ter, a(t) 6= 0 for all t ∈ qN0 , and γi, βi ∈ C, i = 0, 1.

The paper is organized as follows: In Section 2, essential results which are
given by Aygar (2016b) are included for the convenience of the reader. Due
to the erratum of Aygar (2016b), here there are some small differences in the
aspect of green function and the proof of Theorem 1 in Aygar (2016b).

In Section 3, we introduce the sets of eigenvalues and spectral singularities
of the BVP (1)–(2) with hyperbolic eigenparameter and we get the properties
of these sets under the condition∑

t∈qN

(|1− a(t)|+ |b(t)|) <∞. (3)
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2. Preliminaries

Under the condition (3), the solution of BVP (1)–(2) is given

e(t, z) = α(t)
e

ln t
ln q z√
µ(t)

1 +
∑
r∈qN

A(t, r)e
ln r
ln q z

 , t ∈ qN0 (4)

for λ = 2
√
q cosh z in Aygar (2016b), where z ∈ C− := {z ∈ C : Re z ≤ 0},

µ(t) = (q− 1)t for all t ∈ qN0 and α(t), A(t, r) are expressed in terms of {a(t)}
and {b(t)}. In Aygar (2016b), the author shows that A(t, r) satisfies

|A(t, r)| ≤ C
∑

s∈
[
tq
b ln r
2 ln q

c
,∞

)
∩qN

(|1− a(s)|+ |b(s)|) , (5)

where b ln r
2 ln q c is the integer part of ln r

2 ln q and C > 0 is a constant. Using (3) it
is seen that e(·, z) is analytic with respect to z in C− := {z ∈ C : Re z < 0}
and continuous in C−.

Using (4) and the boundary condition (2), we define the function g by

g(z) = (γ0 + 2
√
qγ1 cosh z)e(q, z)

+(β0 + 2
√
qβ1 cosh z)e(1, z).

(6)

The function g is analytic in C−, continuous in C−, and g(z) = g(z + 2iπ).
Analogously to the Sturm–Liouville differential equation, the solution e(·, z)
and the function g are called the Jost solution and Jost function of (1)–(2),
respectively (Năımark (1968)). Let ϕ(λ) = {ϕ(t, z)} t ∈ qN0 , be the solution of
(1) satisfying the initial conditions

ϕ(1, λ) = −(γ0 + γ1λ), ϕ(q, λ) = (β0 + β1λ).

If we define

φ(t, z) = ϕ(2
√
q cosh z) = {ϕ(t, 2√q cosh z)}t∈qN0 ,

then φ is an entire function and φ(z) = φ(z+2iπ). Let us take the semi-strips
P0 = {z ∈ C− : −π2 ≤ Im z ≤ 3π

2 } and P = P0 ∪
[
− iπ2 ,

3iπ
2

]
. The Wronskian of

two solutions y = {y(t, λ)}t∈qN and v = {(t, λ)}t∈qN of (1) is defined by

W [y, v] = µ(t)a(t){y(t, λ)v(qt, λ)− y(qt, λ)v(t, λ), t ∈ qN0 .
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We find W [φ(t, z), e(t, z)] = −µ(1)a(1)g(z). Since φ(·, z) and e(·, z) are
independent solutions for all z ∈ P with g(z) 6= 0, we find the Green function
of the BVP (1)– (2)

Gt,r(z) :=


−φ(r,z)e(t,z)qa(1)g(z) , r = tq−k, k ∈ N0

− e(r,z)φ(t,z)qa(1)g(z) , r = tqk, k ∈ N. (7)

It is obvious that

(Rh)(t) :=
∑
r∈qN

G(t, r)h(r), h ∈ `2(qN) (8)

is the resolvent of the BVP (1)–(2). Related to the equation (1), we will recall
the q-difference operator by L generated in `2(qN) by the q-difference expression

(ly)(t) := a

(
t

q

)
y

(
t

q

)
+ b(t)y(t) + qa(t)y(qt), t ∈ qN.

Let L1 and L2 denote the q-difference operators generated in `2(qN) by

(l1y)(t) := y

(
t

q

)
+ qy(qt), t ∈ qN

and

(l2y)(t) :=

(
a

(
t

q

)
− 1

)
y

(
t

q

)
+ b(t)y(t) + q(a(t)− 1)y(qt), t ∈ qN,

respectively. It is clear that L1 is a self-adjoint operator, L2 is a compact
operator in `2(q

N) and L = L1 + L2 (Aygar and Bohner (2015)). For all
z ∈ C− \ {ikπ : k ∈ Z}, we define the green function and resolvent operator of
L1 by

St,r(z) :=

√
q

2sinhz



e
− ln r

ln q
z

√
µ(r)

e
ln t
ln q

z

√
µ(t)

, r = tq−k, k ∈ N

e
ln r
ln q

z

√
µ(r)

e
− ln t

ln q
z

√
µ(t)

, r = tqk, k ∈ N0.
(9)

and
Rλ(L1)ψ(t) :=

∑
r∈qN

S(t, r)ψ(r), ψ ∈ `2(qN) (10)
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respectively (Aygar (2016b)). Moreover in Aygar (2016b), it is seen that for
every δ > 0, there is a number such that Cδ such that

‖Rλ(L1)‖q >
Cδ

|sinhz|
√
1− e−2Re z

.

Using last inequality and assumption (2), it is shown that

σ(L1) = σc(L1) = σc(L) = [−2√q, 2√q],

where σ(L1) and σc(L1) denote the spectrum and continuous spectrum of the
operator L1, respectively.

3. Properties of Eigenvalues and Spectral
Singularities of L

By using (9), (10) and the definitions of the eigenvalues and the spectral
singularities given in Năımark (1968), we can write

σd = {λ ∈ C : λ = 2
√
q cosh z, z ∈ P0, g(z) = 0} , (11)

σss =

{
λ ∈ C : λ = 2

√
q cosh z, z = iτ, z ∈

[
−π
2
,
3π

2

]
, g(z) = 0

}
\ {0}. (12)

Using (4) and (6), we get

g(z) = α(1)

√
q

q − 1
β1e
−z + α(q)

γ1√
q − 1

+ α(1)
β0√
q − 1

+

(
α(q)

γ0√
q(q − 1)

+ α(1)

√
q

q − 1
β1

)
ez

+α(q)
γ1√
q − 1

e2z +
∑
r∈qN

α(1)

√
q

q − 1
β1A(1, r)e

( ln r
ln q−1)z

+
∑
r∈qN

(
α(q)

γ1√
q − 1

A(q, r) + α(1)
β0√
q − 1

A(1, r)

)
e

ln r
ln q z

+
∑
r∈qN

(
α(q)

γ0√
q(q − 1)

A(q, r) + α(1)

√
q

q − 1
β1A(1, r)

)
e(

ln r
ln q+1)z

+
∑
r∈qN

α(q)
γ1√
q − 1

A(q, r)e(
ln r
ln q+2)z.

322 Malaysian Journal of Mathematical Sciences



The Effects of Hyperbolic Eigenparameter on Spectral Analysis of a Quantum Difference
Equations

Let us define
F (z) := g(z)ez, (13)

then we can write the function F as

F (z) = α(1)

√
q

q − 1
β1 +

(
α(q)

γ1√
q − 1

+ α(1)
β0√
q − 1

)
ez

+

(
α(q)

γ0√
q(q − 1)

+ α(1)

√
q

q − 1
β1

)
e2z

+α(q)
γ1√
q − 1

e3z +
∑
r∈qN

α(1)

√
q

q − 1
β1A(1, r)e

ln r
ln q z

+
∑
r∈qN

(
α(q)

γ1√
q − 1

A(q, r)

+α(1)
β0√
q − 1

A(1, r)

)
e(

ln r
ln q+1)z (14)

+
∑
r∈qN

(
α(q)

γ0√
q(q − 1)

A(q, r)

+α(1)

√
q

q − 1
β1A(1, r)

)
e(

ln r
ln q+2)z

+
∑
r∈qN

α(q)
γ1√
q − 1

A(q, r)e(
ln r
ln q+3)z.

From the continuity, analyticity of the function g, we find that the function
F is analytic in C−, continuous in C−. Since the function g satisfies g(z) =
g(z+2iπ), we can also write F (z) = F (z+2iπ). It follows from (11)–(13) that

σd = {λ = 2
√
q cosh z : z ∈ P0, F (z) = 0} , (15)

σss =

{
λ = 2

√
q cosh z : z = iτ, τ ∈

[
−π
2
,
3π

2

]
, F (z) = 0

}
\ {0}. (16)

Now, we will assume a stronger condition than (4) as∑
t∈qN

ln t

ln q
(|1− a(t)|+ |b(t)|) <∞. (17)
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Theorem 3.1. Assume (17). Then for all z ∈ P , the function F satisfies

F (z) =

√
q

√
q − 1

β1α(1) +O(eRe z), β1 6= 0, Re z → −∞, (18)

F (z) =
1√
q − 1

[γ1α(q) + β0α(1)] e
z +O(e2Re z), β1 = 0, Re z → −∞.

(19)

Proof. Using (5), we get∑
r∈qN

|A(t, r)|e
ln r
ln q Re z ≤ 2CeRe z

∑
p∈[t,∞)∩qN

ln p

ln t
(|1− a(t)|+ |b(t)|). (20)

If Re z → −∞, we get

2CeRe z
∑

p∈[t,∞)∩qN

ln p

ln t
(|1− a(t)|+ |b(t)|)→ 0,

where C is a positive constant.

Also, we can write∑
r∈qN

|A(t, r)|e(
ln r
ln q+m) Re z ≤

∑
r∈qN

|A(t, r)|e
ln r
ln q Re z → 0, Re z → −∞ (21)

for m = 1, 2, 3 and z ∈ P . From (14), (20) and (23), there is a positive real
number M which satisfies

∣∣∣∣∣∣∣
F (z)−

√
qα(1)β1√
µ(1)

eRe z

∣∣∣∣∣∣∣ ≤M
for β1 6= 0, z ∈ P , Re z → −∞. Similarly, for β1 = 0, (19) can be found by
using (14) and (20).

Definition 3.1. The multiplicity of a zero of F in P is called the multiplicity
of the corresponding eigenvalue or spectral singularity of BVP (1)–(2).
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Let us define

M1 := {z ∈ P0 : F (z) = 0} ,
M2 :=

{
z = iτ : z ∈

[
−π2 ,

3π
2

]
: F (z) = 0

}
.

(22)

We also denote the set of all limit points of M1 by M3 and the set of all
zeros of F with infinite multiplicity in P by M4. From (15), (16) and (22), we
get that

σd =
{
λ = 2

√
q cosh z, z ∈M1

}
,

σss =
{
λ = 2

√
q cosh z, z ∈M2

}
\ {0}. (23)

Theorem 3.2. Under the assumption (17), we get:

i) The set M1 is bounded and countable.

ii) M1 ∩M3 = ∅, M1 ∩M4 = ∅.

iii) The set M2 is compact and the Lebesgue measure of M2 in the imaginary
axis is zero.

iv) M3 ⊂M2, M4 ⊂M2, the Lebesgue measure of M3 and M4 are also zero.

v) M3 ⊂M4.

Proof. From (18) and (19), we find the boundedness of the set M1. Since
F is a 2iπ-periodic function and is analytic in C−, we get that M1 has at
most a countable number of elements. We also find (i)–(iv) easily from the
boundary uniqueness theorem of analytic functions (Dolzhenko (2016)). Also,
(v) is obtained using the continuity of all derivatives of F on

[
−iπ2 , i

3π
2

]
.

As a result of Theorem 3.1 and (23), we obtain the following:

Remark 3.1. Under the condition (17), the set σd is bounded, has at most
countable number of elements and its limit points can lie only in [−2√q, 2√q].
Also σss ⊂ [−2√q, 2√q] and the Lebesgue measure of the set σss in the imagi-
nary axis is zero.

Now, we will use a different condition to investigate the quantitative proper-
ties of the sets σd and σss. Let us suppose that complex sequences {a(t)}t∈qN0

and {b(t)}t∈qN satisfy
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supt∈qN

{
exp

[
ε
(

ln t
ln q

)δ]
(|1− a(t)|+ |b(t)|)

}
<∞,

ε > 0, 1
2 ≤ δ < 1.

(24)

It is clear that we obtain

sup
t∈qN

{
exp

(
ε
ln t

ln q

)
(|1− a(t)|+ |b(t)|)

}
<∞, ε > 0, (25)

for δ = 1.

Theorem 3.3. Assume (25). Then the BVP (1)–(2) has a finite number of
eigenvalues and spectral singularities, and each of them is of finite multiplicity.

Proof. Using (5) and (25), we obtain

|A(t, r)| ≤ C1 exp

[
−ε
2

(
ln r

ln q
+

ln r

2 ln q

)]
, t ∈ {1, q}, r ∈ qN, (26)

where C1 > 0 is a constant. It follows from last inequality and (20) that the
function F has an analytic continuation to the right half-plane Re z < ε

4 . Since
F is a 2iπ periodic function, the limit points of zeros of P can not lie on the
boundary of P . By using Theorem 3.1, we obtain that the bounded sets M1

and M2 have a finite number of elements. From the analyticity of function F
in Re z < ε

4 , we get that all zeros of F in P have finite multiplicity.

As you see above, (25) is stronger condition than (24). Now, we will give
the same result as Theorem 3.3 under the condition (24) by using different way
of proof. Because under the condition (24), the function F does not have an
analytic continuation from the imaginary axis to the right half-plane. Before
giving main theorem, we need to give some necessary lemmas.

Lemma 3.1. Suppose that the 2iπ periodic function g is analytic in C−, all of
its derivatives are continuous in C−, and

sup
z∈P
|g(k)(z)| ≤ ηk, k ∈ N0.

If the set G ⊂
[
−iπ2 , i

3π
2

]
with

Lebesgue measure zero is the set of all zeros of the function g with infinity
multiplicity in P , and if ∫ w

0

ln t(s)dµ(Gs) = −∞,
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where t(s) = infk∈N0

ηks
k

k! and µ(Gs) is the Lebesgue measure of the s-neighborhood
of G, and w > 0 is an arbitrary constant, then g ≡ 0 in C− (Bairamov et al.
(2001)).

Lemma 3.2.
|F (k)(z)| ≤ ηk, z ∈ P, k ∈ N0 (27)

holds, where
ηk ≤ Ddkk!kk(

1
δ−1), (28)

and D and d are positive constants depending on C, ε and δ.

Proof. Using (5) and (24), we obtain

|A(t, r)| ≤ C exp

(
−ε
(

ln r

2 ln q

)δ)
, t ∈ {1, q}, r ∈ qN. (29)

It follows from (14) and (29) that

|F (k)(z)| ≤ C4k +Dk, z ∈ P, k ∈ N0,

where

Dk = C4k
∑
r∈qN

(
ln r

ln q

)k
e−

ε
4 (

ln r
ln q )

δ

, k ∈ qN0 .

We can also write for Dk

Dk = C4k
∞∑
m=1

mke−
ε
4m

δ

= C4k
∫ n

0

tke−
ε
4 t
δ

dt ≤ C4k
∫ ∞
0

tke−
ε
4 t
δ

dt.

If we define y = ε
4 t
δ, then we get

Dk ≤ C4k
(
4

ε

) k+1
δ 1

δ

∫ ∞
0

y
k+1
δ −1e−ydy,

and using the definition and properties of Gamma function, we obtain

Dk ≤ C42k+1

(
4

ε

) k+1
δ

(k + 1)
1
δ−1(k + 1)

k
δ . (30)
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Using (30) and the inequalities
(
1 + 1

k

) k
δ < e

1
δ , (k + 1)

1
δ−1 < e

k
δ , and

kk < k!ek, we have
Dk ≤ Ddkk!kk(

1
δ−1), k ∈ N,

where D and d are positive constants depending on ε and δ.

Lemma 3.3. Assume (24). Then M4 = ∅.

Proof. Using the Lemma 3.6, we find∫ w

0

ln t(s)dµ(M4, s) > −∞, (31)

where t(s) = infk∈N0

ηks
k

k! , and µ(M4, s) is the Lebesgue measure of s-neighborhood
of M4, and ηk is defined by (28). Substituting (28) in the definition of t(s), we
find

t(s) = D exp

{
−1− δ

δ
e−1(ds)

−δ
1−δ

}
. (32)

Using (31) and (32), we can write∫ w

0

s−
δ

1−δ dµ(M4, s) <∞.

The last inequality holds for arbitrary s if and only if µ(M4, s) = 0. This gives
M4 = ∅.

Now, we can give the main theorem by using the last three lemmas.

Theorem 3.4. Under the assumption (24), the BVP (1)–(2) has a finite num-
ber of eigenvalues and spectral singularities with finite multiplicities.

Proof. To prove the theorem we have to show that the function F has a finite
number of zeros with finite multiplicities in P . It follows from Theorem 3.3
and Lemma 3.3 that M3 = ∅. So the bounded sets M1 and M2 have no limit
points. This gives that the function F has only finite number of zeros in P .
Since M4 = ∅, these zeros are of finite multiplicity.
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